Our world may be a giant hologram

For many months, the GEO600 team-members had been scratching their heads over inexplicable noise that is plaguing their giant detector. Then, out of the blue, a researcher approached them with an explanation. In fact, he had even predicted the noise before he knew they were detecting it. According to Craig Hogan, a physicist at the Fermilab particle physics lab in Batavia, Illinois, GEO600 has stumbled upon the fundamental limit of space-time – the point where space-time stops behaving like the smooth continuum Einstein described and instead dissolves into “grains”, just as a newspaper photograph dissolves into dots as you zoom in. “It looks like GEO600 is being buffeted by the microscopic quantum convulsions of space-time,” says Hogan.

If this doesn't blow your socks off, then Hogan, who has just been appointed director of Fermilab's Center for Particle Astrophysics, has an even bigger shock in store: “If the GEO600 result is what I suspect it is, then we are all living in a giant cosmic hologram.”

The idea that we live in a hologram probably sounds absurd, but it is a natural extension of our best understanding of black holes, and something with a pretty firm theoretical footing. It has also been surprisingly helpful for physicists wrestling with theories of how the universe works at its most fundamental level.

The holograms you find on credit cards and banknotes are etched on two-dimensional plastic films. When light bounces off them, it recreates the appearance of a 3D image. In the 1990s physicists Leonard Susskind and Nobel prizewinner Gerard 't Hooft suggested that the same principle might apply to the universe as a whole. Our everyday experience might itself be a holographic projection of physical processes that take place on a distant, 2D surface.

The “holographic principle” challenges our sensibilities. It seems hard to believe that you woke up, brushed your teeth and are reading this article because of something happening on the boundary of the universe. No one knows what it would mean for us if we really do live in a hologram, yet theorists have good reasons to believe that many aspects of the holographic principle are true.

Susskind and 't Hooft's remarkable idea was motivated by ground-breaking work on black holes by Jacob Bekenstein of the Hebrew University of Jerusalem in Israel and Stephen Hawking at the University of Cambridge. In the mid-1970s, Hawking showed that black holes are in fact not entirely “black” but instead slowly emit radiation, which causes them to evaporate and eventually disappear. This poses a puzzle, because Hawking radiation does not convey any information about the interior of a black hole. When the black hole has gone, all the information about the star that collapsed to form the black hole has vanished, which contradicts the widely affirmed principle that information cannot be destroyed. This is known as the black hole information paradox (re: What happens when you throw an elephant into a black hole?). …

Continue reading on Our world may be a giant hologram – space – 15 January 2009 – New Scientist.

——

Edwin Abbott Abbott wrote a science fiction story in 1884 called Flatland: A Romance of Many Dimensions that was an allegory to social hierarchy of Victorian culture. The story is about a two-dimensional world referred to as Flatland. The unnamed narrator, a humble square (the social caste of gentlemen and professionals), guides us through some of the implications of life in two dimensions. The Square has a dream about a visit to a one-dimensional world (Lineland), and attempts to convince the realm’s ignorant monarch of a second dimension, but finds that it is essentially impossible to make him see outside of his eternally straight line. (Source: Wikipedia).

The book is out of copyright and is available in its entirety here: Google Books: Flatland.

A movie version was made in 2007. Here’s its trailer.

Leave a Reply

Your email address will not be published. Required fields are marked *

CommentLuv badge